Problem:

(30%) 1. 各舉一實例，並以物理意義說明何謂一階系統及二階系統。

(30%) 2. 試以 Pole-Zero Diagram，討論說明一階系統步階響應的行為。

(40%) 3. 有一個單位回授比例控制調節系統，其受控系之轉移函數為 \(\frac{1}{1+\tau s} \), \(\tau > 0 \)，試分析該控制器之調節行為。

Solution:

1. One-order system: one energy-storage element.

\[
\begin{align*}
 f &= Bx \\
 \text{Laplace Transform} & \Rightarrow X(s) = \frac{1}{Bs} \\
 \frac{X(s)}{F(s)} &= \frac{1}{Bs}
\end{align*}
\]

Two-order system: two separate energy-storage element.

\[
\begin{align*}
 f &= M\ddot{x} + B\dot{x} + kx \\
 \text{Laplace Transform} & \Rightarrow X(s) = \frac{1}{Ms^2 + Bs + k}
\end{align*}
\]

2.

\[
\begin{align*}
 \frac{C(s)}{R(s)} &= \frac{1}{1+\tau s} \\
 c(t) &= 1 - e^{-\frac{t}{\tau}}
\end{align*}
\]
3.

系统的刚度，刚度越高响应越快，反之刚度越低响应越慢。

当输入单位阶跃信号时，系统稳态增益为 k'，当 k 值越大，$k' \to 1$, $e_{ss} \to 0$。

$$
k' = \frac{k}{1+k}
$$

$$
\tau' = \frac{\tau}{1+k}
$$

γ'：相角常数，相角常数越小响应越快，反之相角常数越大响应越慢。

以阶跃响应为例：

$$
\frac{C(s)}{R(s)} = \frac{k}{1+k+\tau s} = \frac{k'}{1+\tau's}
$$

$$
\frac{E(s)}{R(s)} = \frac{1+\tau s}{1+k+\tau s}
$$

$$
k' = \frac{k}{1+k}
$$

$$
\tau' = \frac{\tau}{1+k}
$$
由步階響應可看出：

系統穩態增益為 k'，當 k' 越大，響應越快，穩定越快，$k' \to 1$，穩態誤差 $e_w \to 0$。